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Computational properties of min/max autocorrelation factors
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Abstract

Minimum/maximum autocorrelation factor (MAF) is a suitable algorithm for orthogonalization of a vector random

field. Orthogonalization avoids the use of multivariate geostatistics during joint stochastic modeling of geological

attributes. This manuscript demonstrates in a practical way that computation of MAF is the same as discriminant

analysis of the nested structures. Mathematica software is used to illustrate MAF calculations from a linear model of

coregionalization (LMC) model. The limitation of two nested structures in the LMC for MAF is also discussed and

linked to the effects of anisotropy and support. The analysis elucidates the matrix properties behind the approach and

clarifies relationships that may be useful for model-based approaches.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Geostatistical simulation of a stationary and Gaus-

sian vector random field ZðxÞ ¼ ½Z1ðxÞZ2ðxÞyZnðxÞ�
may be performed without the use of cross-covariances.

The already classic idea is to rotate the data ZðxaÞ to get
factor scores as YðxaÞ ¼ ZðxaÞA (e.g., Davis, 1986). Note
that the components in ZðxÞ are centered with respect to
the mean. After estimation or simulation is indepen-

dently performed for the PCA factor scores, results are

back rotated into the space of the original attributes.

This very attractive proposal introduced by Davis and

Greenes (1983) has not been completely achieved yet

because there is no a general rotation method that may

orthogonalize any general case of ZðxÞ for all separation
lag distances. Davis and Greenes (1983), David et al.

(1984), Wackernagel (1988), Goovaerts (1993), Myers

(1994), have considered this problem with principal

component analysis (PCA), and coregionalized PCA.

Switzer and Green (1984), Wackernagel (1995) and

Desbarats and Dimitrakopoulos (2000) have used min/

max autocorrelation factors (MAF) for this problem.

Principal component analysis (PCA) orthogonaliza-

tion computes eigenvectors Q and eigenvalues K by the

spectral decomposition QCð0ÞQT ¼ K for the matrix of

multivariate covariances Cð0Þ at zero lag distance. This
approach has the limitation that it can orthogonalize the

multivariate covariance matrix CðhÞ only if all covar-
iance and cross-covariance structures are proportional

to each other, that is CðhÞ ¼ B cðhÞ and the attributes
have the same elementary covariance structure cðhÞ: This
is called intrinsic coregionalization (e.g., Wackernagel,

1995).

Another alternative is the orthogonalization of the q

nested structures in the linear model of coregionalization

(LMC) as

CðhÞ ¼
Xq

u¼1

BucuðhÞ: ð1Þ

The total vector random function is made of spatial

components, this is ZðxÞ ¼
Pq

u¼1 Z
uðxÞ The coregiona-

lization matrices Bu in Eq. (1) are diagonalized by the

spectral decomposition QuBuQ
T
u ¼ Ku and the scalar

elementary model covariance cuðhÞ; with unit variance,
has no effect on the eigenvectors; it just multiplies the

ARTICLE IN PRESS

*Corresponding author. Tel.: +61-7-33-65-34-72; fax: +61-

7-33-65-70-28.

E-mail address: roussos@uq.edu.au,

brc@mailbox.uq.edu.au (R. Dimitrakopoulos).

0098-3004/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0098-3004(03)00036-0



eigenvalues in the covariance of coregionalized factors

(e.g., Wackernagel, 1995). This approach does not

provide a single matrix as desired that can orthogonalize

CðhÞ for all lag distances. The coregionalized factors are
YuðxÞ ¼ ZuðxÞQu for each nested spatial component.

Simulation of coregionalized factor scores YuðxÞ may be
made separately. This approach is limited because the

data for conditional simulations require previous

factorial kriging filtering (Matheron, 1971; and Wack-

ernagel, 1988). A numerical approach that searches

average matrix of factors is the simultaneous diagona-

lization (Myers, 1994).

Minimum/maximum autocorrelation factors (MAF)

method (Switzer and Green, 1984) is a double rotation

approach that allows for orthogonalization of ZðxÞ for
the case where modeling of the sample matrix covariance

is adequate with up to two nested structures in the LMC

in Eq. (1). Desbarats and Dimitrakopoulos (2000) have

used MAF in geostatistics for simulation of fifteen joint

attributes. MAF is explained in detail in Section 2 and is

classically performed on sample covariance values using

the so-called delta lag covariance matrices.

This paper aims to revisit MAF approach to derive a

model-based approach that can be used with Mathema-

tica software. The approach is shown to be equivalent to

classic discriminant analysis of the coregionalization

matrices of the LMC. Results are numerically the same

than the usual MAF performed with the delta lag

distances (Switzer and Green, 1984; Berman, 1985). The

paper also addresses MAF computational properties

such as support effects, the inclusion of anisotropy in

computations, and the reasons for limitation of ortho-

gonalization to just two nested structures.

2. The computation of MAF factors revisited

2.1. The MAF algorithm and discriminant analysis

Minimum/maximum autocorrelation factors were

introduced as a filtering technique into remote sensing

imagery. Webster (1978) computed the spectral decom-

position of a ratio of variances for the variability

between and within soil series. Based on this proposal

Switzer and Green (1984) developed a rotation that

maximizes and minimizes the autocorrelation of the

factors MAF. This is

Q2CðDÞðQ1BQ
T
1 Þ

�1QT2 ¼ K; ð2Þ

where CðDÞ is the matrix variogram for non-standar-

dized PCA factor scores YðxÞ at a D lag distance smaller
than the range, Q1BQ

T
1 is a matrix of PCA eigenvalues,

B is the sum of the coregionalization matrices for the

original attributes, same as Cð0Þ; Q2 is the matrix of
eigenvectors for the standardized variogram

CðDÞðQ1BQ
T
1 Þ

�1 at some lag D; and K is a matrix of

eigenvalues. The approach have been shown (Berman,

1985) to be related to discriminant analysis or diag-

onalization of an asymmetric covariance matrix as

follows:

Q½B1B�1�QT ¼ K; ð3Þ

where B1 is the coregionalization matrix for one nested

structure. See Wackernagel (1995) for a review. The

discriminant analysis of Eq. (3) is based on the property

that B1B
�1 ¼ I � B2B�1: This means that any matrix Q

that diagonalizes B1B
�1 simultaneously diagonalizes

B2B
�1: However, it does not necessarily imply that

it also diagonalizes B1 or B2 simultaneously. Both

ratio matrices are asymmetric and that complicates

calculations.

2.2. From LMC to MAF

MAF is applied to two nested structures as follows.

The multivariate matrix of covariance is

CðhÞ ¼ B1c1ðhÞ þ B2c2ðhÞ: ð4Þ

For h ¼ 0 this is

B ¼ B1 þ B2: ð5Þ

The covariance becomes

CðhÞ ¼ B1c1ðhÞ þ Bc2ðhÞ � B1c2ðhÞ: ð6Þ

Computing the eigenvectors Q gives a symmetric

rotation

Q1BQ
T
1 ¼ Q1½B1 þ B2�Q

T
1 : ð7Þ

Scaling the eigenvectors by the standard deviation of the

factors yields

A1 ¼ QK�1=2: ð8Þ

This is a key step because the PCA factors become

standardized. Thus, the covariance matrix for the PCA

scores for lag distance zero CY ð0Þ (i.e., variance) is the
identity matrix that cannot be affected by any sub-

sequent rotation. The PCA factors A1 are applied to the

coregionalization matrices as

A1BA
T
1 ¼ A1½B1 þ B2�AT1 : ð9Þ

Since the eigenvalues are the variances of the factors,

they standardize the factor scores Y(x) of Eq. (3).

CY ðhÞ ¼A1B1AT1 c1ðhÞ

þ A1BAT1 c2ðhÞ � A1B1AT1 c2ðhÞ: ð10Þ

Note CY ð0Þ ¼ I is a diagonal identity matrix, and the
factor scores are still correlated at lag distance ha0:
Then,

CY ðhÞ ¼ A1B1AT1 c1ðhÞ þ Ic2ðhÞ � A1B1AT1 c2ðhÞ: ð11Þ
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Using V for notation of the new coregionalization

matrices, CY ðhÞ becomes

CY ðhÞ ¼ V1c1ðhÞ þ ðI� V1Þc2ðhÞ: ð12Þ

This is an important property of the PCA factors

where the variances of two non-orthogonal nested

components are complementary and the off-diagonal

terms (cross-covariances) have opposite signs to provide

the identity matrix CY ð0Þ: Arraying the multivariate
matrix of covariances for factors yields

CY ðhÞ ¼ V1ðc1ðhÞ � c2ðhÞÞ þ Ic2ðhÞ: ð13Þ

Deviations from orthogonality of the PCA factors are

clearly the difference between nested structures c1ðhÞ �
c2ðhÞ scaled by the off-diagonal terms of V1: The matrix
CY ðhÞ is usually asymmetric and has an odd and even
component for any given ha0: The next step of MAF
builds on the assumption that the covariance matrix

CY ðhÞ can be substituted by the multivariate matrix
variogram that is symmetric.

The asymmetry of the covariance for PCA factors can

be explicitly removed using the variogram for factors.

This is

CY ðhÞ ¼ I� ð½CY ðhÞ�T þ ½CY ðhÞ�Þ12: ð14Þ

The matrix V1 is made symmetric, this yields

CY ðhÞ ¼ I� ½ðVT1 þ V1Þ
1
2
�ðc1ðhÞ � c2ðhÞÞ � Ic2ðhÞ: ð15Þ

Assuming a lag distance h¼ D and Da0; MAF are

obtained from a second computation of eigenvectors as

CMAFðDÞ ¼Q2CY ðDÞQT2 ¼ I�Q2½ðV
T
1 þ V1Þ

1
2
�

�QT2 ðc
1ðDÞ � c2ðDÞÞ � Ic2ðDÞ: ð16Þ

The new eigenvectors Q2 are the same for any lag

distance D: However, the eigenvalues depend on D; and
in general they make the new covariance for the spatially

orthogonal factors. The term D ¼ Q2½ðV
T
1 þ V1Þ

1
2
�QT2 is

perfectly diagonal. Then, the last rotation diagonalizes

both the total variogram for PCA factors and the matrix

of the rotated components. The variogram for MAF

factors for two nested structures is perfectly diagonal for

all lag distances. This is

CMAFðhÞ ¼ Q2CY ðhÞQT2
¼ I� ½Dc1ðhÞ þ ðI�DÞc2ðhÞ�: ð17Þ

The diagonal matrix D may be written also as

D ¼ Q2½½Q1B1Q
T
1 �K

�1 þ ð½Q1B1Q
T
1 �K

�1ÞT�QT2 : ð18Þ

Note that due to asymmetry Q2½½Q1B1Q
T
1 �K

�1�QT2 is not
strictly diagonal as could be assumed. However, the

term D is a diagonal matrix, then the property of

eigenvectors Q2 is that they diagonalize ½ðV
T
1 þ V1Þ

1
2
� and

I� ½ðVT1 þ V1Þ
1
2
� also. The division by two may not be

required in the eigenvector computation; also the

variogram may be avoided if an average covariance is

utilized. Eq. (17) may also be written as a covariance,

this is

CMAFðhÞ ¼ Dc1ðhÞ þ ðI�DÞc2ðhÞ: ð19Þ

Up to Eq. (19), the rotation is perfect and the

averaging of the asymmetric cross-covariances CY ðhÞ
to make the variogram is a very important step for it. It

is evident that the average covariance suffices. Theore-

tically, no deviations from orthogonality exist, numeri-

cally MAF provides a perfect orthogonalization if

performed on covariance models with two nested

structures. However, to avoid the modeling of cross-

covariances MAF is usually done on numerical sample

covariances.

Data can be rotated in two stages, as shown above, or

a single matrix of loadings for factors may be built as

AMAF ¼ Q2K
�1
1 Q1: ð20Þ

An important point is that the linear model of

coregionalization LMC in Eq. (1) has been used for

demonstration purposes here, but in the common

remote sensing practice of MAF modeling the LMC

has been avoided. MAF has been a data-based approach

because in remote sensing the objective is filtering and

not stochastic modeling. In most cases, an exhaustive

data set or complete image is assumed available.

However, in geostatistics one needs to generalize the

concept using random field theory for modeling data

from sampling. This implies that MAF is computed in

geostatistics from sample covariances obtained basically

from sample data analysis. In the cases where a good fit

to a multivariate covariance model is available,

performing MAF on models may be a preferred

alternative. Another reason for using the LMC previous

to MAF approach is to test whether the assumption that

there are only two unknown nested components in the

problem is applicable. In other words, if MAF does not

provide reasonable orthogonal factors, then a check for

the amount of nested structures present should be

carried out.

3. Analysis of computational limitations and spatial

characteristics of MAF

3.1. Computational oscillations in the extension of MAF

Extending MAF approach for three nested structures

may be attractive but appears non-trivial within a linear

framework. Extension to three nested structures could

allow for a spatial orthogonality of the factor scores for

cases where two nested structures are not sufficient

enough in the LMC. For theoretical purposes, we use

the linear model of coregionalization. This is

CðhÞ ¼ B1c1ðhÞ þ B2c2ðhÞ þ B3c3ðhÞ ð21Þ
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and

B ¼ B1 þ B2 þ B3: ð22Þ

Then B3 ¼ B� B1 � B2 and

CðhÞ ¼ B1c1ðhÞ þ B2c2ðhÞ þ ðB� B1 � B2Þc3ðhÞ: ð23Þ

Computing eigenvectors Q1 gives

Q1CðhÞQ
T
1 ¼Q1B1Q

T
1 c1ðhÞ þQ1B2Q

T
1 c2ðhÞ

þQ1ðB� B1 � B2ÞQT1 c3ðhÞ: ð24Þ

Multiplying by the inverse of the diagonal matrix of

eigenvalues this is the covariance for classic PCA factors

A1CðhÞAT1 ¼A1B1AT1 c1ðhÞ þ A1B2AT1 c2ðhÞ

þ A1ð�B1 � B2ÞAT1 c3ðhÞ þ Ic3ðhÞ: ð25Þ

Then, computing the matrix multivariate variogram

from the average of the rotated matrices as before is

CðhÞ ¼ I�M1c
1ðhÞ �M2c

2ðhÞ

� ð�M1 �M2Þc3ðhÞ � Ic3ðhÞ: ð26Þ

From the definition of the relationship between nested

covariances and nested variograms, it is convenient to

introduce a matrix

Mð3Þ ¼M1 þM2 ð27Þ

then the variogram is also

CðhÞ ¼ I�M1c
1ðhÞ � ðMð3Þ �M1Þc2ðhÞ

þMð3Þc3ðhÞ � Ic3ðhÞ: ð28Þ

Making h-N gives an identity matrix because the

elementary structures become zero. Thus, an additional

rotation could or not improve the orthogonality. The

lack of orthogonality in the factors matrix variogram is

at short lag distances D: The extended MAF comes from
choosing an existing non-diagonal matrix for computing

new eigenvectors as

Q2M
ð3ÞQT2 ¼ Q2½M1 þM2�QT2 : ð29Þ

The new factor scores have a variogram as

CY2ðhÞ ¼ I� P1c1ðhÞ � ðDð3Þ � P1Þc2ðhÞ

þDð3Þc3ðhÞ � Ic3ðhÞ; ð30Þ

where P1 ¼ Q2M1Q
T
2 and P2 ¼ Q2M2Q

T
2 : Further

orthogonalization using eigenvalues may imply the use

of Eq. (12). This is to make Dð3Þ identity, it destroys

existing identity matrices and

CY2ðhÞ ¼D�1 � P1c1ðhÞ � ðIð3Þ � P2Þc2ðhÞ

þ Ið3Þc3ðhÞ �D�1c3ðhÞ: ð31Þ

A matrix of eigenvectors diagonalizes Q3P1Q
T
3 but at

the cost of loosing previous diagonal matrices. This is

CY2ðhÞ ¼Q3D
�1QT3 �Dc1ðhÞ � ðIð3Þ �DÞ

� ðc2ðhÞ þ Ið3Þc3ðhÞ �Q3D
�1Q3c

3ðhÞ: ð32Þ

Further attempts to diagonalize Q3D
�1QT3 matrices will

only oscillate the approximate orthogonality of CY2ðhÞ:

3.2. Support effect on the computation of MAF

Usually, sampling and simulations of the Gaussian

vector random function ZðxÞ are carried on at a quasi-
point support. The problem is that factor scores may

come from a small support simulation that may be

spatially averaged by re-blocking of the realizations

prior or after back rotation. This is common for

simulation of blocks in mining, and up scaling for finite

element flow simulation in petroleum reservoir modeling

and hydrology.

Multivariate support effect on PCA is studied in

Vargas-Guzm!an et al. (1999b) who introduce the

methodology of computing average spatial cross-covar-

iances for up scaling using the LMC. The dispersion

covariance matrix for attributes measured in elements of

support u within a region of support V is

D2ðujV Þ ¼
Xq

u¼1

Bu

1

V2

Z
V

dx

Z
V

guðx � x0Þ dx0
�

�
1

u2

Z
u
dx

Z
u

guðx � x0Þ dx0
�
: ð33Þ

The scalar quantities within brackets are elementary

dispersion variances. Then,

D2ðujV Þ ¼
Xq

u¼1

BuduðujV Þ: ð34Þ

The eigenvectors for spatial average multivariate covar-

iances matrices may be independent of support only if

matrix Bu can be factored out. This is the case of intrinsic

coregionalization. On the other hand, the eigenvalues are

the dispersion variances of the PCA factors.

The approach explained above can be applied to study

support effect in MAF but instead of multivariate

dispersion covariances one has to appeal to the

regularized multivariate variogram. Vargas-Guzm!an

et al. (1999a) introduce a regularized cross-variogram

that allows for a regularized LMC

CuðhÞ ¼
Xq

u¼1

Bu guðhÞ �
1

u2

Z
u
dx

Z
u

guðx � x0Þ dx0
� �

:

ð35Þ

Since the block support is constant, the within-block

average elementary variogram r is also scalar constant,

then

CuðhÞ ¼
Xq

u¼1

Bu½guðhÞ � r�: ð36Þ

From Eq. (35) and previous results in Eq. (19), it is

evident that MAF eigenvectors are independent of h and

the size of blocks, therefore covariance matrices can be
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applied regardless of support as far as the two nested

structures regularized LMC is followed. More than two

structures will not be orthogonalized properly and the

scale effect will appear, this is also applicable for

attributes at different support, which may not be used

in MAF. If more than two nested structures are present

there is no a unique single set of eigenvectors that can be

chosen. For a given support each delta lag distance will

provide different results. In these cases, corrections for

the scale effect on MAF may be attempted using the same

delta lag distances as in the MAF on point and

regularized multivariate variograms. Thus, factors com-

puted at point support are used for data at point support.

After re-blocking, the data should be back rotated with

the MAF coming from the regularized model.

3.3. Effect of anisotropy in the computation of MAF

Introducing anisotropy into MAF means the matrix

of factors should simultaneously diagonalize the covar-

iance matrix in the major directions of anisotropy.

Consider the LMC for two nested structures along two

principal directions of anisotropy is

C1ðhÞ ¼ B11c11ðhÞ þ B12c12ðhÞ; ð37Þ

C2ðhÞ ¼ B21c21ðhÞ þ B22c22ðhÞ;

where B11 þ B12 ¼ B21 þ B22: Thus, PCA or zero lag

distance diagonalization is the same for both models.

Following the Eq. (37), it is evident that complete

diagonalization of both models by MAF may only be

achieved if the coregionalization matrices are propor-

tional. This is B11 ¼ aB21 and B12 ¼ bB22; in this case
the MAF orthogonalization of one direction automati-

cally diagonalizes the variogram on the other principal

direction regardless of the range and the coregionaliza-

tion matrices in the covariances. If the matrices of

coregionalization are not proportional, the problem is

one of simultaneous orthogonalization of more than two

structures that apparently has no linear solution as was

shown in Section 3.1. The effect of anisotropy is related

to the amount of non-proportional coregionalization

matrices present in the principal directions of anisotro-

py. In the case of three dimensions, the discussion above

is still valid under the same restrictions.

3.4. Model versus data-based computation of MAF

From the analysis in previous sections, two possibi-

lities for computation of MAF in geostatistics are

available, one based on sample matrix covariance and

the second based on a model matrix covariance. In the

first approach, MAF is computed from geostatistical

data, and does not require modeling of cross-variograms

(Desbarats and Dimitrakopoulos, 2000). The numerical

computation of sample cross-variograms for PCA

factors is included as part of the algorithm for a set of

lag distances that fall within specified interval of delta

lag-distances. The final MAF factor scores are indepen-

dent of each other for all lag distances. Therefore, each

MAF factor is treated as a scalar random function and

may be stochastically modeled separately. However, this

approach is valid if the back rotation of modeled values

does not include non-linear operations and the factor

scores are Gaussian. It is shown that MAF is

theoretically a sound orthogonalization only if two

nested structures suffice for modeling the multivariate

covariance. From this, it is apparent that ignoring

modeling of the LMC might lead to unknown errors if

two structures do not suffice for adequate modeling the

multivariate covariance. The interesting part of this

data-based approach is that the two nested structures

may not necessarily be known models and has the

advantage that it may allow for computations without

restriction to known models. Computing MAF with this

first approach is heavily dependent on the quality of the

numerical sample cross-covariances for the PCA factors.

MAF are supposed to be constant for the interval of lag

distances, then, looking at the coefficient of variation of

the factor loadings may help to see the quality of the

estimate. Also note that at difference of remote sensing

images, the limited number of samples in geostatistics

may require vector random field concepts and models of

covariances.

The second approach is model-based that is made on

the vector random field. Note that the elementary

covariances cuðhÞ may not be directly involved in MAF
computation at all. This approach has the advantage

that only numerical coregionalization matrices are

required and reduce the computation of MAF to

discriminant analysis. However, the disadvantage is that

coregionalization matrices can only be well known after

modeling with the LMC, which is considered a cumber-

some task. This brings a question about what if the

required models are not in the group of commonly

known models. However, this is consistent with most

geostatistical approaches that are performed under the

random field concept and are restricted to combinations

of known models.

The next example illustrates the computation of MAF

using model-based approach with Mathematica soft-

ware. It numerically shows that the approach works for

two nested structures. In addition the maximization and

minimization of autocorrelation occur as a consequence

of the property in Eq. (12) for the coregionalization

matrices of factors.

4. Computation of MAF using MATHEMATICA

The MATHEMATICA software is an excellent

tool able to handle matrix computations involving
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eigenvectors and eigenvalues. The example computation

of MAF presented in this section was made using

MATHEMATICA and the commands are copied from

the corresponding run. Two known coregionalization

matrices for four attributes were obtained after model-

ing and are:

B1 : ¼

0:700:250:200:15

0:250:300:350:30

0:200:350:600:09

0:150:300:090:90

0
BBB@

1
CCCA;

B2 : ¼

0:300:230:100:15

0:230:700:200:20

0:100:200:400:13

0:150:200:130:10

0
BBB@

1
CCCA:

The two elementary covariances are exponential and

Gaussian as follows

g1½h � : ¼ Exp½ � hC100�

g2½h � : ¼ Exp½ � ðhC25Þ2�:

The next commands plot the elementary structures

Plot½g1½h�; fh; 0:1; 200g� ðFig: 1Þ

and

Plot½g2½h�; fh; 0:1; 200g� ðFig: 2Þ

The total zero lag distance covariance is

B : ¼ B1þ B2

MatrixForm½B�

1 0:48 0:30 0:30

0:48 1 0:55 0:50

0:30 0:55 1 0:22

0:30 0:50 0:22 1

0
BBB@

1
CCCA:

PCA is performed; eigenvectors and eigenvalues are

obtained

Q1 : ¼ Eigenvectors½B�

MatrixForm½Q1�

0:4691780 0:5934460 0:472777 0:451857

0:0588408 �0:0474221 �0:688363 0:721419

0:8550450 �0:1247820 �0:322922 �0:386068

0:2128540 �0:7937270 0:445375 0:355432

0
BBB@

1
CCCA;

L1 : ¼ Q1:B:Transpose½Q1�

MatrixForm½L1�

2:19836 0 0 0

0 0:781682 0 0

0 0 0:681196 0

0 0 0 0:338763

0
BBB@

1
CCCA:

The zero off-diagonal terms are left as from the

original output, thus the exercise could be reproduced.

The coregionalization matrices are rotated yielding

the coregionalization matrices for PCA factors as

follows

V1 : ¼ Q1:B1:Transpose½Q1�:Inverse½L1�

V2 : ¼ Q1:B2:Transpose½Q1�:Inverse½L1�

V : ¼ Q1:B:Transpose½Q1�:Inverse½L1�

MatrixForm½V1�

0:5753820 0:1046220 0:0009108 0:5591050

0:0372009 0:8492960 �0:1582630 0:2027650

0:0002822 0:1379180 0:7778690 �0:0302086

0:0861569 0:0878775 �0:0150229 0:1220390

0
BBB@

1
CCCA

MatrixForm½V2�

0:4246180 �0:1046220 �0:0009108 �0:5591050

�0:0372009 0:1507040 0:1582630 �0:2027650

�0:0002822 0:1379180 0:2221310 0:0302086

�0:0861569 �0:0878775 0:0150229 0:8779610

0
BBB@

1
CCCA:
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Fig. 1. Elementary exponential covariance.
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Fig. 2. Elementary Gaussian covariance.
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Note that both follow Eq. (12). The covariance for PCA

factors is computed as

G½h � : ¼ V1� g1½h� þ V2� g2½h�

which is diagonal only for h ¼ 0:
Since this covariance is asymmetric as seen from the

model above, an average covariance is computed. The

coregionalization matrices are made symmetric

S1 : ¼ ðTranspose½V1� þ V1Þ2�1

S2 : ¼ ðTranspose½V2� þ V2Þ2�1

and a symmetric covariance matrix for a single delta lag

distance h ¼ 50 is

M : ¼ ðG½50� þ Transpose½G½50��Þ=2

MatrixForm½M�

0:3567640 0:0417111 0:00035089 0:1897770

0:0417111 0:5178840 �0:08710890 0:0854790

0:0003509 �0:0871089 0:47587000 �0:0133029

0:1897770 0:0854790 �0:0133029 0:0910070

0
BBB@

1
CCCA:

Note that the same eigenvectors are obtained if the

computation is made for the matrix S1 reducing MAF to

classic discriminant analysis. Computing eigenvectors

for this previous matrix is

Q2 : ¼ Eigenvectors½M�

MatrixForm½Q2�

�0:302823 �0:773975 0:498274 �0:246951

�0:643697 �0:086164 �0:686805 �0:326388

0:545815 �0:618079 �0:529144 0:200177

0:442762 0:107317 �0:005400 �0:890177

0
BBB@

1
CCCA:

The PCA coregionalization matrices are rotated giving

the min/max coregionalization matrices

U1 : ¼ Q2:S1:Transpose½Q2�

U2 : ¼ Q2:S2:Transpose½Q2�

U : ¼ Q2:V:Transpose½Q2�

These new matrices are symmetric and of course U is

still the identity matrix. The covariance for the MAF

factors is

G2½h � : ¼ U1� g1½h� þU2� g2½h�

where, the rounded results are

MatrixForm½U1�

1:0 0 0 0

0 0:75 0 0

0 0 0:61 0

0 0 0 0:0

0
BBB@

1
CCCA

MatrixForm½U2�

0:0 0 0 0

0 0:25 0 0

0 0 0:39 0

0 0 0 1:0

0
BBB@

1
CCCA:

The diagonal terms show the discrimination of the

two structures. The individual diagonal matrices may

have negative terms. The first attribute is almost entirely

modeled by the exponential, the fourth attribute is

almost entirely the Gaussian model, and the other two

attributes correspond to linear combinations. Plots in

Figs. 3–6 show these results

Plot½G2½x�½½1;1��; fx; 0:1; 200g� ðFig: 3Þ
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Fig. 3. Autocorrelation for first MAF factor.
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Fig. 4. Autocorrelation for second MAF factor.
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Fig. 5. Autocorrelation for third MAF factor.
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Plot½G2½x�½½2;2��; fx; 0:1; 200g� ðFig: 4Þ

Plot½G2½x�½½3;3��; fx; 0:1; 200g� ðFig: 5Þ

Plot½G2½x�½½4;4��; fx; 0:1; 200g� ðFig: 6Þ

The final matrix of factors is computed as

A : ¼ Q2:Inverse½D1�:Q1

MatrixForm½A�

0:2785580 0:181747 0:122120 �1:107710

�1:014031 0:295917 �0:119204 �0:144531

�0:343396 0:058629 1:015470 0:031766

�0:183890 1:386220 �0:621429 �0:318580

0
BBB@

1
CCCA:

5. Discussion and conclusions

Modeling of the matrix covariance with the LMC

reduces computation of MAF to classic discriminant

analysis of the coregionalization matrices that may be

easily solved with Mathematica software. This paper has

shown that MAF computation with delta lag distances is

analogous to discriminant analysis of the coregionaliza-

tion matrices. The computation becomes very simple

and other programs for computation of spectral

decomposition can also handle MAF. If the modeling

is avoided, a numerical computation of a set of delta lag

matrix covariances for the PCA factors is required for

computing MAF.

The discrimination of the nested structures is clearly

illustrated by Figs. 3 and 6 from results obtained with

Mathematica in the example. The result of this example

is that individual elementary nested structures do not

directly participate in the orthogonalization and MAF is

reduced to discriminant analysis with the coregionaliza-

tion matrices.

It has been shown here that PCA factors computed

from the covariance at zero lag distance have the

property that the coregionalization matrices for two

nested structures in the multivariate covariance add to

the identity matrix. This gives possibility of MAF

orthogonalization because both matrices are diagona-

lized with the eigenvector matrix of any of the two

nested components. This is due to linearity and supports

that MAF is equivalent to discriminant analysis of the

coregionalization matrices. The general problem of non-

linearity and orthogonalization of more than three

nested components calls for further research.

The support effects have been modeled and results can

be obtained by the model-based MAF approach

performed for a regularized multivariate covariance for

the same delta lag distances utilized. If two nested

structures are sufficient for modeling the Gaussian

vector random field, the scale effect vanishes. The scale

effect of MAF is indeed the scale effect on discriminant

analysis. An analogous situation has been described for

anisotropy, where the main directions of anisotropy

need to respond to proportional coregionalization

matrices (i.e., coplanar vectors) thus anisotropy can be

handled, otherwise it becomes a problem of simulta-

neous orthogonalization of more than two nested

structures. Note that anisotropy is not considered by

classic discriminant analysis.
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